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Learning Objectives: 

 

From this module students may get to know about the following: 

 

1. An overview of the problem of energy loss by a charged particle in 

passing through matter. 

2. Energy transfer to a free atomic electron by a fast moving charged 

particle. 

3. Limitations of the formula in the small distance and large distance 

limits and the corresponding corrections. 

4. Result for the case of harmonically bound charge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

24. Energy Loss in Collisions - I 
 

24.1 Introduction 
 

In this module we begin our study of collisions between fast moving charged particles.  In a 

collision between charged particles there is exchange of energy between the particles and there is 

accompanying deflections.  Our aim is to find loss of energy by a charged particle moving 

through a medium.  This is an interesting system from many points of view.  Historically it 

played an important role in resolving the question of the structure of matter by Rutherford.  

Energy loss is an important phenomenon in particle physics, nuclear engineering and solid state 

physics in the study of properties of materials and radiation damage to materials. 

 

A fast moving charged particle when it passes through matter makes collisions both with the 

atomic electrons and the nuclei.  The resulting energy loss and deflection of the particle by the 

electrons and the nuclei depends on its mass.  If the particle is considerably heavier than 

electrons, its collision with the electrons and with the nuclei have different consequences.  The 

electron being lighter than the incident particle, is able to absorb appreciable amount of energy 

but does not cause much of a deflection of the incident particle. On the other hand the massive 

nuclei (it is assumed that the incident particle is much lighter than the nuclei, say a pion, a kaon, a 

muon, a proton or an alpha particle etc) can take up very little energy but because of much larger 

charge, can cause scattering of the incident particle. Thus loss of energy of the incident particle 

occurs almost exclusively from collisions with electrons and the deflection of the particle from 

collisions with the nuclei.  The scattering is confined, by and large, to small angles, so that the 

particle keeps a more or less straight path until it loses most of its energy and comes near the end 

of its range before it is finally absorbed. 

 

If the incident particle is an electron it loses energy as well as suffers scattering in collisions with 

atomic electrons.  As a result their path in matter is much less straight; they have a rather short 

range after which they simply diffuse in the surrounding material. 

 

The subject of energy loss and scattering is of great practical interest and is a rather technical 

subject.  For obtaining accurate results a proper quantum-mechanical treatment is required.  

However we are more interested here in the physical ideas involved rather than the detailed tables 

of ranges of various subatomic particles in various media.  All the essential features can be 

understood from a classical treatment and the order of magnitude of the quantum-mechanical 

effects can be obtained from the use of uncertainty principle. 

 

24.2 Energy transfer in Coulomb collisions 

 

We begin by considering the problem of energy transfer to an atomic electron by a fast moving 

charged particle assumed to be much heavier than the electron.  Let the mass of the particle be M 

and charge ze.  If the speed of the particle is large compared to the characteristic speed of the 

electron in its orbit, the electron can be considered as essentially free as well as at rest.  We 

further assume that the momentum transfer p  to the electron is sufficiently small so that the 

incident particle is essentially undeflected from its straight-line path.  The recoiling electron also 

does not move appreciably from its position of equilibrium.  Thus all we need to calculate is the 

impulse delivered to the electron by the electric field of the incident particle.  Since the electron is 

essentially at rest, the effect of the magnetic field can be ignored.  As we saw in our study of the 

theory of relativity, the magnetic field produced by a moving charge is of the order of u/c2 



 

 

compared to the electric field, where u is the speed of the moving particle.  Thus the force due to 

the magnetic field is of the order uv/c2 compared to that due to the electric field and is negligible 

even for relativistically moving particle. 

 

 ze, M    v    x2 P      

 
    O  (-e,m)   x1 

 

    Fig. 24.1 
 

The collision is depicted in the figure above.  The incident particle has mass M, charge Ze, speed 

v and energy cvMcE /;)1(; 2/122    .  For the incident particle we have used the 

relativistic formula for energy.  The electron which is positioned at O, has mass m and charge –e.  

The distance OP is the impact parameter, the distance of closest approach of the particle to the 

electron.  In terms of these parameters, the fields produced by the incident particle at the position 

of the electron are given by  
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[See module on Theory of relativity for details.]   
 

 

Of the x and y components of the electric field, the x component being an odd function of time its 

time integral is zero.  The momentum impulse is, therefore, in the transverse direction and has the 

magnitude 
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Interestingly, the impulse, p , is independent of γ.  As γ increases, the peak (which is t =0 ) field 

increases in magnitude, but the duration for which it is significant decreases in inverse proportion 

and velocity times the time integral is independent of γ.  The energy transferred to the electron, as 

a function of the impact parameter, is then 
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The energy loss is directly proportional to the square of the charge of the target particle and 

inversely proportional to its mass.  Thus for the nucleus of charge Ze the result would have 

multiplied by a factor of Z2/(1840A).  However there are Z electrons per nucleus so that overall 

energy loss to the nucleus is down by a factor of Z/(1840A).  In other words, it is completely 

negligible.   

 

If, as we have in any case assumed, pp  , then the angular deflection of the incident particle 

is given by 
p

p
 .  Thus for small deflections 
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This result agrees with the exact expression for the Rutherford scattering of a non-relativistic 

charged particle for small angles: 
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24.2.1 Small distance limit 

 

The energy transfer given by equation (3) has several interesting features.  It depends on the 

charge and velocity of the incident particle but not on its mass.  It varies as inverse square of the 

impact parameter so that close collisions involve very large energy transfers.  However as b tends 

to zero the formula gives infinite energy transfer which is obviously meaningless.  The formula is 

actually valid only for large values of b.  The energy transfer obviously cannot exceed the 

maximum possible energy transfer that takes place when the collision is head-on.  The maximum 

energy transfer can be easily calculated from law of conservation of energy and momentum.  If a 

particle of mass m and velocity v hits head-on a particle of mass M initially at rest, the amount of 

energy transferred can be calculated to be 
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If the mass of the incident particle is large compared to that of the initially stationary particle, as 

is the case under consideration, M<<m, the above expression reduces to 
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Equating this to the value of W  from equation (3), we obtain the value bmin of b up to which we 

can expect formula (3) to be valid as 
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We can argue in an alternative way to obtain this limiting value of bmin.  In deriving equation (3) 

we had assumed that the initially stationary electron does not move appreciable during the 

collision.  As long as the distance it actually moves is small compared to b, equation (3) should be 

approximately valid.  The distance traversed by the electron can be estimated in the following 

way.  The momentum of the electron changes from zero to p , so the average speed of the 

electron is mp 2/ .  From equation (1) we see that the time for which the field Ey of the 

incoming particle is appreciable is 
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Thus the distance traveled by the electron during the collision is of the order of t
m

p
d 




2
.  

Substituting for Δp from equation (2), we have 

 

  min2

2

04

1
b

mv

ze
d 


       (10) 

. 

Note that these formulae are not correct for incident particles with too high energy because of the 

other factors in the denominator in equation (6).  For muons, (M/m)   207, and the denominator 

must be taken into account if the energy is comparable to or greater than 44 GeV.  For protons 

this energy comes to about 340 GeV.  For equal mass particles, 
2

max )1( mcW   . 

 

24.2.2 Large distance limit 
 

The result for energy transfer given by equation (3) is approximate for large distances as well.  

This is because of the binding of the electrons in the atom which has been neglected since we 

have assumed the electrons to be free.  As long as the collision time given by equation (9) is short 

compared to the orbital period of the electron in its orbit, the collision is sudden enough and the 

electron can be treated as free.  On the other hand if the orbital period is very short compared to 

t , the electron will make many rounds during the time the incident particle is passing by.  The 

atom then responds adiabatically – it stretches slowly during the encounter and then returns to 

normal, with no appreciable transfer of energy.  If ω is the characteristic frequency of the 

electron, the dividing line between the two extremes is given by 1)( max  bt , or 
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Beyond this no significant energy transfer is possible.[See figure 13.2 from Jackson Edition 2] 

 

 

 

 



 

 

 
Fig: Energy transfer as a function of impact parameter 

 

The figure shows the graph between the impact parameter b and energy loss )(bE  on the log 

scale.  The dotted curve depicts the approximate form, equation (3), while the solid curve 

represents the “correct” result taking into account the deviations both at low b and high b.  The 

approximate result is reasonably accurate at intermediate values of b: bmin < b < bmax, deviating 

more and more from it as b goes beyond bmax or below bmin. 

 

14.2.3 The energy loss per unit distance  

 

 

What we have calculated so far is the energy transferred by the moving particle to a single 

electron at a fixed impact parameter b.  However as the fast moving particle passes through 

matter, it sees electrons at various distances from its path.  We are interested in the energy loss by 

the particle per unit distance of its travel.  If there are N atoms per unit volume of the matter and 

each atom has Z electrons, the number of electrons located at impact parameters between b and (b 

+ db) in a thickness dx of matter is 

 

  )()2( dxdbbNZdn   .      (12) 

 

Since the energy loss due to collision with a single electron is )(bE , the total energy loss per 

unit distance by the incident particle due to collisions with all the particles is 
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The integration over b is to be done from zero to infinity.  However in view of the behavior of 

)(bE  as shown in the diagram, we may use the approximate formula (3) and integrate from bmin 

to bmax.  In this process we overestimate the contribution from bmin to bmax by a small margin, but 

ignore a small contribution from outside this range. As a result of this integration 
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where 
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The lower limit can be tackled more accurately.  A proper treatment of the scattering process for 

any impact parameter b yields for the energy transfer the expression 
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where bmin is given by equation (8).  Using this expression for )(bW  in equation (13) and 

integrating from zero to bmax yields exactly the same result, viz.; equation (15).  However the 

cutoff at bmax is only approximate.  Consequently, the expression for B is uncertain to within a 

small factor.  Since it is logarithm of B that appears in the expression for energy loss, this factor is 

not of much consequence. 

 

14.3 The case of harmonically bound charge 

 

We now consider the more realistic case of the electron being harmonically bound rather than 

being free.  This serves as a simple but more realistic model of the energy lost by a charged 

particle passing through matter.  Thus we have a charged particle of charge ze, velocity v and 

mass M which is much greater than the mass m of the bound charge of value –e.  As before we 

will assume that the incoming particle being massive deviates only slightly from its path which 

can thus be taken to be a straight line.  The impact parameter, the distance of closest approach to 

the bound charge is b. [See figure below.] 

 

        Ze, M                          v 

 
                                                   O 
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The effect of binding is obviously significant only at large impact parameters.  Thus we can 

assume that the energy transfer is not very large.  As a result, the motion of the bound charge is 

also non-relativistic throughout, and its amplitude of oscillations about the origin remains small 

compared to the impact parameter.  Under these circumstances, the effect of magnetic part of the 

Lorentz force can be neglected and only the force due to electric field need be included.  

Furthermore, the spatial variation of the field over the position of the particle may be neglected, 

and its value may be taken to be that at the origin, the position of equilibrium of the charged 

particle.  This is sometimes called the dipole approximation. 

 

With these approximations, the equation of motion for the harmonically bound charge may be 

written as 
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Here )(tE


 is the electric field at the origin due to the moving charged particle; its components 

are given by equation (1).  0  is the characteristic frequency of oscillation of the bound charge 

and   is the usual damping factor.   

 

One way to solve this inhomogeneous differential equation is to take the Fourier transform of 

both )(tE


 and )(tx


. So let 
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Since )(tx


 [and also )(tE


] is real, on taking the complex conjugate of equation (19) we obtain 
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Or 
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Similarly 
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On substituting the Fourier integral forms of )(tE


 and )(tx


, equations (19) and (20), into the 

equation of motion (18), we obtain 
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Given )(tE


, )(E


 can be determined from the inverse Fourier transform of equation (21): 
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Substitution of )(E


 into equation (23) determines )(x


, and then substitution of )(x


 into 

equation (19) determines )(tx


.  All this, of course, if the various integrals can be performed 

analytically. 

 

However, what we are really interested in is the energy transfer to the bound charge in the 

collision rather than its detailed motion.  The energy transfer can be found by considering the 

work done by the incident particle on the bound one.  The rate of doing work is given by 

 

  vEe
dt

xd
F

dt

dW 
..         (25) 

 

The total work done by the particle passing by on the bound charge is thus 
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In the dipole approximation that we have made, )(tE


 is the electric field of the incident particle 

at the position of equilibrium of the bound charge.   

 

To perform the integral in equation (26), we use the Fourier representations of )(tE


 and )(tx


, 

equations  (19) and (20).  This gives 
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Now we use the Fourier representation of the delta function 
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Further simplification can be achieved on using equations (21) and (22) which connect 

the negative and positive frequency parts of )(E


 and )(x


.   Splitting integral (26) into 

two parts, from )0,(  and ),0(  , and using equations (21) and (22) in the first part, we 

obtain 
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Now using equation (23) for )(x


 in terms of )(E
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, we obtain 

 

  





0 22

0

2|)(|
)(Re2 




 d

i

E

m

e
ieW   

 

On rationalizing the denominator in the integrand we obtain 
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We continue to make further approximations to get an idea of the effect of binding on the energy 

transfer.  For small   the integrand peaks sharply around 0   in an approximately 

Lorentzian line shape. (The Lorentzian function is the singly peaked function given by 
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maximum of the sharp peak.  Then equation (29) becomes 
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This integral has the value 2/  independent of /0 .  Thus finally we have 
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This is a very general result for energy transfer to a nonrelativistic oscillator by an external field..  

In the present case the field is produced by a moving charged particle. 

For a particle with charge ze, velocity v, and impact parameter b (see figure 24.1), the nonzero 

electromagnetic fields at the origin O are given by equation (1).  Then )( 0E


 is given by the 

inverse Fourier transform of equation (20): 
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Using equation (1) for the y component of )(tE


 we obtain 
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Now on changing the integration variable to bvtu /  we get 
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The integral in this equation is related to the modified Bessel Function K1.  We have the integral 

representation of modified Bessel Function )(zK  given by [See Handful of Mathematical 

Functions, Ed. By Abramowitz and Segun]: 
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In particular 
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On partial integration this becomes 
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On using equation (35), equation (33) becomes 
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We do the calculation for the x-component in a similar fashion. On substituting for )(tEx  from 

equation (1) into equation (31), we have 
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The same change of variable, bvtu / , and use of equation (36) for the integral yields in case 
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The energy transfer to a harmonically bound charge can now be calculated explicitly.  

Substituting equations (37) and (38) for )(yE  and )(xE  respectively into equation (30), we 

obtain 
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The factor outside the square brackets is just the approximate result for energy loss, equation (3).  

The asymptotic forms of K0 and K1 for large and small argument are well known and are 
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Using these asymptotic forms we see that the term in the square brackets tends to 1 for ξ<<1, and 

to 

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1(  e  for ξ>>1.  Since 

maxb

b
 , we see that the energy transfer is essentially the 

approximate result given by equation (3) for b<<bmax.  For b>>bmax it falls off exponentially to 

zero.  This is as was expected from the qualitative argument given earlier. 

 

 

Summary: 

1. An overview of the problem of energy loss by a charged particle in 

passing through matter is given. 

2. Formula for energy transfer to a free atomic electron by a fast moving 

charged particle is derived. 

3. Limitations of the formula in the small distance and large distance 

limits and the corresponding corrections are given. 

4. Energy loss by the moving particle per unit distance is obtained. 

5. Effect of the binding of the electron on the energy transfer is discussed 

and the formula for harmonically bound charge is derived. 


